Artificial intelligence in gastrointestinal endoscopy for inflammatory bowel disease: a systematic review and new horizons

Author:

Tontini Gian Eugenio12ORCID,Rimondi Alessandro31,Vernero Marta4,Neumann Helmut5,Vecchi Maurizio12,Bezzio Cristina4,Cavallaro Flaminia1

Affiliation:

1. Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy

2. Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy

3. Department of Pathophysiology and Organ Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, Milano 20122, Italy

4. Gastroenterology Unit, Rho Hospital, ASST Rhodense, Milan, Italy

5. Department of Interdisciplinary Endoscopy, University Hospital Mainz, Mainz, Germany

Abstract

Introduction: Since the advent of artificial intelligence (AI) in clinical studies, luminal gastrointestinal endoscopy has made great progress, especially in the detection and characterization of neoplastic and preneoplastic lesions. Several studies have recently shown the potential of AI-driven endoscopy for the investigation of inflammatory bowel disease (IBD). This systematic review provides an overview of the current position and future potential of AI in IBD endoscopy. Methods: A systematic search was carried out in PubMed and Scopus up to 2 December 2020 using the following search terms: artificial intelligence, machine learning, computer-aided, inflammatory bowel disease, ulcerative colitis (UC), Crohn’s disease (CD). All studies on human digestive endoscopy were included. A qualitative analysis and a narrative description were performed for each selected record according to the Joanna Briggs Institute methodologies and the PRISMA statement. Results: Of 398 identified records, 18 were ultimately included. Two-thirds of these (12/18) were published in 2020 and most were cross-sectional studies (15/18). No relevant bias at the study level was reported, although the risk of publication bias across studies cannot be ruled out at this early stage. Eleven records dealt with UC, five with CD and two with both. Most of the AI systems involved convolutional neural network, random forest and deep neural network architecture. Most studies focused on capsule endoscopy readings in CD ( n = 5) and on the AI-assisted assessment of mucosal activity in UC ( n = 10) for automated endoscopic scoring or real-time prediction of histological disease. Discussion: AI-assisted endoscopy in IBD is a rapidly evolving research field with promising technical results and additional benefits when tested in an experimental clinical scenario. External validation studies being conducted in large and prospective cohorts in real-life clinical scenarios will help confirm the added value of AI in assessing UC mucosal activity and in CD capsule reading. Plain language summary Artificial intelligence for inflammatory bowel disease endoscopy Artificial intelligence (AI) is a promising technology in many areas of medicine. In recent years, AI-assisted endoscopy has been introduced into several research fields, including inflammatory bowel disease (IBD) endoscopy, with promising applications that have the potential to revolutionize clinical practice and gastrointestinal endoscopy. We have performed the first systematic review of AI and its application in the field of IBD and endoscopy. A formal process of paper selection and analysis resulted in the assessment of 18 records. Most of these (12/18) were published in 2020 and were cross-sectional studies (15/18). No relevant biases were reported. All studies showed positive results concerning the novel technology evaluated, so the risk of publication bias cannot be ruled out at this early stage. Eleven records dealt with UC, five with CD and two with both. Most studies focused on capsule endoscopy reading in CD patients ( n = 5) and on AI-assisted assessment of mucosal activity in UC patients ( n = 10) for automated endoscopic scoring and real-time prediction of histological disease. We found that AI-assisted endoscopy in IBD is a rapidly growing research field. All studies indicated promising technical results. When tested in an experimental clinical scenario, AI-assisted endoscopy showed it could potentially improve the management of patients with IBD. Confirmatory evidence from real-life clinical scenarios should be obtained to verify the added value of AI-assisted IBD endoscopy in assessing UC mucosal activity and in CD capsule reading.

Publisher

SAGE Publications

Subject

Gastroenterology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capsule Endoscopy in Inflammatory Bowel Disease;Gastrointestinal Endoscopy Clinics of North America;2024-09

2. Role of artificial intelligence in Crohn's disease intestinal strictures and fibrosis;Journal of Digestive Diseases;2024-08-27

3. Evaluation of online chat-based artificial intelligence responses about inflammatory bowel disease and diet;European Journal of Gastroenterology & Hepatology;2024-07-08

4. Virtual reality tools for training in gastrointestinal endoscopy: A systematic review;Artificial Intelligence in Gastrointestinal Endoscopy;2024-06-08

5. Application of artificial intelligence in gastrointestinal endoscopy;Arab Journal of Gastroenterology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3