Affiliation:
1. Department of Life Science, National Taiwan University , Taipei , Taiwan
2. Genome and Systems Biology Degree Program, National Taiwan University , Taipei , Taiwan
Abstract
Abstract
Background
Increased neutrophil extracellular trap (NET) formation and abundant NET-associated proteins are frequently found in the inflamed colon of patients with inflammatory bowel disease. Peptidyl arginine deiminase 4 (PAD4) activation is essential for the generation of NET and NET-mediated pathogenesis. However, the role of PAD4-dependent NET formation in murine inflammatory bowel disease models and the molecular mechanisms responsible for the altered gut barrier function are unknown.
Methods
Wild-type and Pad4 knockout (Pad4-/-) mice were administrated 3% dextran sulfate sodium (DSS) in their drinking water. Caco-2 monolayers were used to test the effect of NETs on intestinal barrier function and cytotoxicity. Histones were intrarectally administrated to wild-type mice to determine their effects on intestinal barrier function and cytotoxicity in vivo.
Results
PAD4 deficiency reduced the severity of DSS-induced colitis with decreased intestinal NET formation and enhanced gut barrier function and integrity in mice. NETs disrupted the barrier function in intestinal epithelial Caco-2 monolayers through their protein, rather than DNA, components. Pretreatment of NETs with histone inhibitors abrogated the effects on epithelial permeability. Consistent with these observations, adding purified histone proteins to Caco-2 monolayers significantly damaged epithelial barrier function, which was associated with the abnormal distribution and integrity of tight junctions as well as with increased cell death. Furthermore, intrarectal administration of histones damaged the intestinal barrier integrity and induced cytotoxicity in the mouse colon epithelium.
Conclusions
PAD4-mediated NET formation has a detrimental role in acute colitis. NET-associated histones directly inhibit intestinal barrier function, resulting in cytotoxicity in vitro and in vivo.
Funder
National Science and Technology Council
Publisher
Oxford University Press (OUP)
Subject
Gastroenterology,Immunology and Allergy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献