Ileal Transcriptomic Analysis in Paediatric Crohn’s Disease Reveals IL17- and NOD-signalling Expression Signatures in Treatment-naïve Patients and Identifies Epithelial Cells Driving Differentially Expressed Genes

Author:

Ashton James J12,Boukas Konstantinos3,Davies James4,Stafford Imogen S15,Vallejo Andres F4,Haggarty Rachel6,Coelho Tracy A F2,Batra Akshay2,Afzal Nadeem A2,Vadgama Bhumita7,Williams Anthony P35,Beattie R Mark2,Polak Marta E41,Ennis Sarah1

Affiliation:

1. Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK

2. Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK

3. Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK

4. Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK

5. Institute for Life Sciences, University of Southampton, Southampton, UK

6. NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK

7. Department of Paediatric Histopathology, Southampton Children’s Hospital, Southampton, UK

Abstract

Abstract Background and Aims Crohn’s disease [CD] arises through host-environment interaction. Abnormal gene expression results from disturbed pathway activation or response to bacteria. We aimed to determine activated pathways and driving cell types in paediatric CD. Methods We employed contemporary targeted autoimmune RNA sequencing, in parallel to single-cell sequencing, to ileal tissue derived from paediatric CD and controls. Weighted gene co-expression network analysis [WGCNA] was performed and differentially expressed genes [DEGs] were determined. We integrated clinical data to determine co-expression modules associated with outcomes. Results In all, 27 treatment-naive CD [TN-CD], 26 established CD patients and 17 controls were included. WGCNA revealed a 31-gene signature characterising TN-CD patients, but not established CD, nor controls. The CSF3R gene is a hub within this module and is key in neutrophil expansion and differentiation. Antimicrobial genes, including S100A12 and the calprotectin subunit S100A9, were significantly upregulated in TN CD compared with controls [p = 2.61 x 10-15 and p = 9.13 x 10-14, respectively] and established CD [both p = 0.0055]. Gene-enrichment analysis confirmed upregulation of the IL17-, NOD- and Oncostatin-M-signalling pathways in TN-CD patients, identified in both WGCNA and DEG analyses. An upregulated gene signature was enriched for transcripts promoting Th17-cell differentiation and correlated with prolonged time to relapse [correlation-coefficient-0.36, p = 0.07]. Single-cell sequencing of TN-CD patients identified specialised epithelial cells driving differential expression of S100A9. Cell groups, determined by single-cell gene expression, demonstrated enrichment of IL17-signalling in monocytes and epithelial cells. Conclusions Ileal tissue from treatment-naïve paediatric patients is significantly upregulated for genes driving IL17-, NOD- and Oncostatin-M-signalling. This signal is driven by a distinct subset of epithelial cells expressing antimicrobial gene transcripts.

Funder

Wessex Investigational Sciences Hub, Faculty of Medicine, Cancer Sciences

Wellcome Trust

MRC

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3