Affiliation:
1. Department of Plant Physiology and Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
Abstract
Abstract
Nearly 10% of all plant proteins belong to the zinc (Zn) proteome. They require Zn either for catalysis or as a structural element. Most of the protein-bound Zn in eukaryotic cells is found in the cytosol. The fundamental differences between transition metal cations in the stability of their complexes with organic ligands, as described by the Irving–Williams series, necessitate buffering of cytosolic Zn (the ‘free Zn’ pool) in the picomolar range (i.e. ~6 orders of magnitude lower than the total cellular concentration). Various metabolites and peptides, including nicotianamine, glutathione, and phytochelatins, serve as Zn buffers. They are hypothesized to supply Zn to enzymes, transporters, or the recently identified sensor proteins. Zn2+ acquisition is mediated by ZRT/IRT-like proteins. Metal tolerance proteins transport Zn2+ into vacuoles and the endoplasmic reticulum, the major Zn storage sites. Heavy metal ATPase-dependent efflux of Zn2+ is another mechanism to control cytosolic Zn. Spatially controlled Zn2+ influx or release from intracellular stores would result in dynamic modulation of cellular Zn pools, which may directly influence protein–protein interactions or the activities of enzymes involved in signaling cascades. Possible regulatory roles of such changes, as recently elucidated in mammalian cells, are discussed.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
University of Bayreuth
Publisher
Oxford University Press (OUP)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献