Sugar export from Arabidopsis leaves: actors and regulatory strategies

Author:

Xu Qiyu123,Liesche Johannes1234ORCID

Affiliation:

1. College of Life Sciences, Northwest A&F University, Yangling, China

2. State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China

3. Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China

4. Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

Abstract

Abstract Plant acclimation and stress responses depend on the dynamic optimization of carbon balance between source and sink organs. This optimization also applies to the leaf export rate of photosynthetically produced sugars. So far, investigations into the molecular mechanisms of how the rate is controlled have focused on sugar transporters responsible for loading sucrose into the phloem sieve element–companion cell complex of leaf veins. Here, we take a broader view of the various proteins with potential direct influence on the leaf sugar export rate in the model plant Arabidopsis thaliana, helped by the cell type-specific transcriptome data that have recently become available. Furthermore, we integrate current information on the regulation of these potential target proteins. Our analysis identifies putative control points and units of transcriptionally and post-transcriptionally co-regulated genes. Most notable is the potential regulatory unit of sucrose transporters (SUC2, SWEET11, SWEET12, and SUC4) and proton pumps (AHA3 and AVP1). Our analysis can guide future research aimed at understanding the regulatory network controlling leaf sugar export by providing starting points for characterizing regulatory strategies and identifying regulatory factors that link sugar export rate to the major signaling pathways.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3