The BTB/POZ domain protein GmBTB/POZ promotes the ubiquitination and degradation of the soybean AP2/ERF-like transcription factor GmAP2 to regulate the defense response to Phytophthora sojae

Author:

Zhang Chuanzhong12,Gao Hong1,Sun Yan1,Jiang Liangyu13,He Shengfu1,Song Bo1,Liu Shanshan1,Zhao Ming1,Wang Le1,Liu Yaguang1,Wu Junjiang4,Xu Pengfei1,Zhang Shuzhen1ORCID

Affiliation:

1. Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China

2. Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China

3. College of Agriculture, Jilin Agricultural University, Changchun, China

4. Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin, China

Abstract

Abstract Phytophthora root and stem rot in soybean (Glycine max) is a destructive disease worldwide, and hence improving crop resistance to the causal pathogen, P. sojae, is a major target for breeders. However, it remains largely unclear how the pathogen regulates the various affected signaling pathways in the host, which consist of complex networks including key transcription factors and their targets. We have previously demonstrated that GmBTB/POZ enhances soybean resistance to P. sojae and the associated defense response. Here, we demonstrate that GmBTB/POZ interacts with the transcription factor GmAP2 and promotes its ubiquitination. GmAP2-RNAi transgenic soybean hairy roots exhibited enhanced resistance to P. sojae, whereas roots overexpressing GmAP2 showed hypersensitivity. GmWRKY33 was identified as a target of GmAP2, which represses its expression by directly binding to the promoter. GmWRKY33 acts as a positive regulator in the response of soybean to P. sojae. Overexpression of GmBTB/POZ released the GmAP2-regulated suppression of GmWRKY33 in hairy roots overexpressing GmAP2 and increased their resistance to P. sojae. Taken together, our results indicate that GmBTB/POZ-GmAP2 modulation of the P. sojae resistance response forms a novel regulatory mechanism, which putatively regulates the downstream target gene GmWRKY33 in soybean.

Funder

NSFC Projects

Natural Science Foundation of Heilongjiang Province

Key Research and Development Program of Heilongjiang Province

Outstanding Talents and Innovative Team of Agricultural Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3