Arabidopsis annexin 5 is involved in maintenance of pollen membrane integrity and permeability

Author:

Lichocka Małgorzata1ORCID,Krzymowska Magdalena1ORCID,Górecka Magdalena1ORCID,Hennig Jacek1ORCID

Affiliation:

1. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland

Abstract

Abstract In Arabidopsis, a dry stigma surface enables a gradual hydration of pollen grains by a controlled release of water. Occasionally the grains may be exposed to extreme precipitations that cause rapid water influx and swelling, eventually leading to pollen membrane rupture. In metazoans, calcium- and phospholipid-binding proteins, referred to as annexins, participate in the repair of plasma membrane damages. It remains unclear, however, how this process is conducted in plants. Here, we examined whether plant annexin 5 (ANN5), the most abundant member of the annexin family in pollen, is involved in the restoration of pollen membrane integrity. We analyzed the cellular dynamics of ANN5 in pollen grains undergoing hydration in favorable or stress conditions. We observed a transient association of ANN5 with the pollen membrane during in vitro hydration that did not occur in the pollen grains being hydrated on the stigma. To simulate a rainfall, we performed spraying of the pollinated stigma with deionized water that induced ANN5 accumulation at the pollen membrane. Interestingly, calcium or magnesium application affected pollen membrane properties differently, causing rupture or shrinkage of pollen membrane, respectively. Both treatments, however, induced ANN5 recruitment to the pollen membrane. Our data suggest a model in which ANN5 is involved in the maintenance of membrane integrity in pollen grains exposed to osmotic or ionic imbalances.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference76 articles.

1. Plasma membrane repair;Andrews;Current Biology,2018

2. Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth;Bloch;Plant Physiology,2016

3. Review: Annexin-A5 and cell membrane repair;Bouter;Placenta,2015

4. Annexins induce curvature on free-edge membranes displaying distinct morphologies;Boye;Scientific Reports,2018

5. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair;Boye;Nature Communications,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3