Affiliation:
1. Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
2. Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
Abstract
Drought is a critical abiotic stress which leads to crop yield and a decrease in quality. Annexins belong to a multi-gene family of calcium- and lipid-binding proteins and play diverse roles in plant growth and development. Herein, we report a rice annexin protein, OsANN9, which in addition to regular annexin repeats and type-II Ca2+ binding sites, also consists of a C2H2-type zinc-finger domain. We found that the expression of OsANN9 was upregulated by polyethylene glycol (PEG) or water-deficient treatment. Moreover, plants that overexpressed OsANN9 had increased survival rates under drought stress, while both OsANN9-RNAi and osann9 mutants showed sensitivity to drought. In addition, the overexpression of OsANN9 increased superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, which regulate reactive oxygen species homeostasis. Collectively, these findings indicate that OsANN9 may function as a positive regulator in response to drought stress by modulating antioxidant accumulation. Interestingly, the setting rates of osann9 mutant rice plants significantly decreased in comparison to wild-type plants, suggesting that OsANN9 might be involved in other molecular mechanisms in the rice seed development stage.
Funder
Hebei Natural Science Foundation
National Natural Science Foundation of China
Hebei Research Center of the Basic Discipline of Cell Biology
The Graduate Innovation Funding Program of Hebei Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献