Frozen in the dark: interplay of night-time activity of xanthophyll cycle, xylem attributes, and desiccation tolerance in fern resistance to winter

Author:

Fernández-Marín Beatriz12ORCID,Arzac Miren Irati2,López-Pozo Marina2,Laza José Manuel3,Roach Thomas4,Stegner Matthias4,Neuner Gilbert4,García-Plazaola José I2ORCID

Affiliation:

1. Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife 38200, Spain

2. Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain

3. Laboratory of Macromolecular Chemistry (Labquimac), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain

4. Department of Botany and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria

Abstract

Abstract While most ferns avoid freezing as they have a tropical distribution or shed their fronds, wintergreen species in temperate and boreoalpine ecosystems have to deal with sub-zero temperatures. Increasing evidence has revealed overlapping mechanisms of desiccation and freezing tolerance in angiosperms, but the physiological mechanisms behind freezing tolerance in ferns are far from clear. We evaluated photochemical and hydraulic parameters in five wintergreen fern species differing in their ability to tolerate desiccation. We assessed frond freezing tolerance, ice nucleation temperature and propagation pattern, and xylem anatomical traits. Dynamics of photochemical performance and xanthophyll cycle were evaluated during freeze–thaw events under controlled conditions and, in selected species, in the field. Only desiccation-tolerant species, which possessed a greater fraction of narrow tracheids (<18 μm) than sensitive species, tolerated freezing. Frond freezing occurred in the field at –3.4 ± 0.9 °C (SD) irrespective of freezing tolerance, freezable water content, or tracheid properties. Even in complete darkness, maximal photochemical efficiency of photosystem II was down-regulated concomitantly with zeaxanthin accumulation in response to freezing. This was reversible upon re-warming only in tolerant species. Our results suggest that adaptation for freezing tolerance is associated with desiccation tolerance through complementary xylem properties (which may prevent risk of irreversible cavitation) and effective photoprotection mechanisms. The latter includes de-epoxidation of xanthophylls in darkness, a process evidenced for the first time directly in the field.

Funder

Basque Government

‘Juan de la Cierva-Incorporación’

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3