New Methodology to Study the Dispersive Component of the Surface Energy and Acid–Base Properties of Silica Particles by Inverse Gas Chromatography at Infinite Dilution

Author:

Hamieh Tayssir12

Affiliation:

1. SATIE, IFSTTAR, University Gustave Eiffel, Campus de Marne-La-Vallée, 25, allée des Marronniers, 78000 Versailles, France

2. Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA) and LEADDER Laboratory, Faculty of Sciences and EDST, Lebanese University, Hariri Campus, Hadath, P.O. Box 6573/14, Beirut, Lebanon

Abstract

Abstract A new methodology was proposed to determine the dispersive component of the surface energy ${\gamma}_s^d$ of a solid taking into account the effect of the temperature on the surface area of n-alkanes, methylene group (${a}_{- CH2-}$) and polar molecules, thus defeating the method used by Dorris–Gray Schultz et al. We determined the correct ${\gamma}_s^d$ of the surface energy, the specific free energy, enthalpy and entropy of adsorption of polar molecules as well as the acid base constants of silica particles with an excellent accuracy. We confirmed the dependence of the dispersive component of the surface energy on the variations of the surface areas of organic molecules used in IGC technique at infinite dilution. The specific properties of interactions of silica particles were determined. The new proposed model took into account this thermal effect. Obtained results proved that the other used IGC methods gave inaccurate values of the specific parameters of silica surface, except for the vapor pressure method that led to excellent results of the specific free energy, enthalpy and entropy of adsorption, and the acid–base constants of the silica particles.

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3