The Effect of Temperature on the London Dispersive and Lewis Acid-Base Surface Energies of Polymethyl Methacrylate Adsorbed on Silica by Inverse Gas Chromatography

Author:

Hamieh Tayssir12ORCID

Affiliation:

1. Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2. Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon

Abstract

Inverse gas chromatography at infinite dilution was used to determine the surface thermodynamic properties of silica particles and PMMA adsorbed on silica, and more particularly, to quantify the London dispersive energy γsd, the Lewis acid γs+, and base γs− polar surface energies of PMMA/silica composites as a function of the temperature and the recovery fraction θ of PMMA. The polar acid-base surface energy γsAB and the total surface energy of the different composites were then deduced as a function of the temperature. In this paper, the Hamieh thermal model was used to quantify the surface thermodynamic energy of polymethyl methacrylate (PMMA) adsorbed on silica particles at different recovery fractions. A comparison of the new results was carried out with those obtained by applying other molecular models of the surface areas of organic molecules adsorbed on the different solid substrates. An important deviation of these molecular models from the thermal model was proved. The determination of γsd, γs+, γs−, and γsAB of PMMA in both the bulk and adsorbed phases showed an important non-linearity variation of these surface parameters as a function of the temperature. The presence of maxima in the curves of γsd(T) highlighted the second-order transition temperatures in PMMA showing beta-relaxation, glass transition, and liquid–liquid temperatures. These three transition temperatures depended on the adsorption rate of PMMA on silica. The proposed method gave a new relation between the recovery fraction of PMMA and its London dispersive energy, showing an important effect of the temperature on the surface energy parameters of the adsorption of PMMA on silica. A universal equation relating γsd(T,θ) of the systems PMMA/silica to the recovery fraction and the temperature was proposed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3