Involvement of NGATHA-Like 1 Transcription Factor in Boron Transport under Low and High Boron Conditions

Author:

Tsednee Munkhtsetseg1ORCID,Tanaka Mayuki1,Giehl Ricardo Fh2,von Wirén Nicolaus2,Fujiwara Toru1

Affiliation:

1. Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku , Tokyo, 113-8657 Japan

2. Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research , Stadt Seeland, Gatersleben, 06466, Germany

Abstract

Abstract NGATHA-Like 1 (NGAL1) transcription factor has been identified as a gene regulated through AUG-stop-mediated boron (B)-dependent translation stall; however, its function in B response remains unknown. Here, we show that NGAL1 plays an important role in the maintenance of B transport under both low- and high-B conditions in Arabidopsis thaliana. NGAL1 mRNA is accumulated predominantly in shoots in response to B stress. Independent ngal1 mutants carrying transferred DNA (T-DNA) and Ds-transposon insertions exhibit reduced B concentrations in aerial tissues and produce shortened and reduced number of siliques when B supply is limited. Furthermore, the expression of B transporter genes including nodulin 26-like intrinsic protein 6; 1 (NIP6;1), NIP5;1, NIP7;1 and borate exporter 1 (BOR1) is significantly decreased in ngal1 mutants under low-B condition, suggesting that NGAL1 is required for the transcript accumulation of B transporter genes to facilitate B transport and distribution under B limitation. Under high-B condition, ngal1 mutants exhibit reduced growth and increased B concentration in their shoots. The accumulation of BOR4 mRNA, a B transporter required for B efflux to soil, is significantly reduced in roots of ngal1 plants under high-B condition, suggesting that NGAL1 is involved in the upregulation of BOR4 in response to excess B. Together, our results indicate that NGAL1 is involved in the transcriptional regulation of B transporter genes to facilitate B transport and distribution under both low- and high-B conditions.

Funder

Deutsche Forschungsgemeinschaft

Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3