Semi-automated technique for bovine skeletal muscle fiber cross-sectional area and myosin heavy chain determination

Author:

Fuerniss Luke K1,Johnson Bradley J1

Affiliation:

1. Department of Animal and Food Sciences, Texas Tech University , Lubbock, TX 79409 , USA

Abstract

Abstract Myosin heavy chain (MyHC) type and muscle fiber size are informative but time-consuming variables of interest for livestock growth, muscle biology, and meat science. The objective of this study was to validate a semi-automated protocol for determining MyHC type and size of muscle fibers. Muscle fibers obtained from the longissimus and semitendinosus of fed beef carcasses were embedded and frozen within 45 min of harvest. Immunohistochemistry was used to distinguish MyHC type I, IIA, and IIX proteins, dystrophin, and nuclei in transverse sections of frozen muscle samples. Stained muscle cross sections were imaged and analyzed using two workflows: 1) Nikon workflow which used Nikon Eclipse inverted microscope and NIS Elements software and 2) Cytation5 workflow consisting of Agilent BioTek Cytation5 imaging reader and Gen5 software. With the Cytation5 workflow, approximately six times more muscle fibers were evaluated compared to the Nikon workflow within both the longissimus (P < 0.01; 768 vs. 129 fibers evaluated) and semitendinosus (P < 0.01; 593 vs. 96 fibers evaluated). Combined imaging and analysis took approximately 1 h per sample with the Nikon workflow and 10 min with the Cytation5 workflow. When muscle fibers were evaluated by the objective thresholds of the Cytation5 workflow, a greater proportion of fibers were classified as glycolytic MyHC types, regardless of muscle (P < 0.01). Overall mean myofiber cross-sectional area was 14% smaller (P < 0.01; 3,248 vs. 3,780) when determined by Cytation5 workflow than when determined by Nikon workflow. Regardless, Pearson correlation of mean muscle fiber cross-sectional areas determined by Nikon and Cytation5 workflows was 0.73 (P < 0.01). In both workflows cross-sectional area of MyHC type I fibers was the smallest and area of MyHC type IIX fibers was the largest. These results validated the Cytation5 workflow as an efficient and biologically relevant tool to expedite data capture of muscle fiber characteristics while using objective thresholds for muscle fiber classification.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3