Body, carcass, and steak dimensions of straightbred Holstein calves and Angus-sired calves from Holstein, Jersey, and crossbred beef dams

Author:

Fuerniss Luke K1,Young James Daniel1,Hall Jerica R1,Wesley Kaitlyn R1,Bowman Sydney M1,Felizari Luana D1,Woerner Dale R1,Rathmann Ryan J1,Johnson Bradley J1

Affiliation:

1. Department of Animal and Food Sciences, Texas Tech University , Lubbock, TX 79409 , USA

Abstract

Abstract Beef genetics are used with increasing frequency on commercial dairies. Although use of beef genetics improves calf value, variability has been reported in beef × dairy calf phenotype for traits related to muscularity and carcass composition. The objective of this study was to characterize morphometric and compositional differences between beef, beef × dairy, and dairy-fed cattle. Tested treatment groups included Angus-sired straightbred beef steers and heifers (A × B; n = 45), Angus × Holstein crossbreds (A × H; n = 15), Angus × Jersey crossbreds (A × J; n = 16), and straightbred Holsteins (H, n = 16). Cattle were started on trial at mean BW of 302 ± 29.9 kg and then fed at 196 ± 3.4 d. Morphometric measures were recorded every 28 d during the finishing period, ultrasound measures were recorded every 56 d, and morphometric carcass measures were recorded upon slaughter. Muscle biopsies were collected from the longissimus thoracis of a subset of steers (n = 43) every 56 d. Strip loins were collected from carcasses (n = 78) for further evaluation. Frame size measured as hip height, hip width, and body length was greatest for H cattle (P < 0.05), and A × H cattle had greater hip height than A × J cattle (P < 0.05). Relative to BW as a percentage of mature size, ribeye area of all cattle increased at a decreasing rate (negative quadratic term: P < 0.01), and all ultrasound measures of fat depots increased at an increasing rate (positive quadratic term: P < 0.01). Although no difference was observed in muscle fiber area across the finishing period from the longissimus thoracis (P = 0.80), H cattle had a more oxidative muscle phenotype than A × B cattle (P < 0.05). Additionally, H cattle had the smallest area of longissimus lumborum in the posterior strip loin, greatest length-to-width ratio of longissimus lumborum in the posterior strip loin, and least round circumference relative to round length (P < 0.05). Beef genetics improved muscularity in portions of the carcass distal to the longissimus thoracis.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference103 articles.

1. Factors affecting beef carcass cutability: an evaluation of the USDA yield grades for beef;Abraham;J. Anim. Sci,1980

2. Phenotypic expression of muscle fiber types and some implications to meat quality;Ashmore;J. Anim. Sci,1974

3. Board invited review: crossbreeding beef × dairy cattle for the modern beef production system;Basiel;Transl. Anim. Sci,2022

4. Fitting linear mixed-effects models using lme4;Bates;J. Stat. Softw.,2015

5. BIF guidelines wiki: required carcass data collection for use in genetic evaluations;Beef Improvement Federation,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3