Affiliation:
1. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125 , China
2. University of Chinese Academy of Sciences , Beijing 100039 , China
3. College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University , Changsha 410128 , China
Abstract
Abstract
Two experiments were conducted to determine digestible energy (DE), metabolizable energy (ME), as well as the standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in 10 sorghum samples fed to pigs. In experiment 1, 22 crossbred barrows (Duroc × Yorkshire × Landrace, Initial body weight [BW]: 70.0 ± 1.8 kg) were selected and allotted to a replicated 11 × 3 incomplete Latin square design, including a basal diet and 10 sorghum energy diets and three consecutive periods. Each period had 7 d adaptation and 5 d total feces and urine collection. The DE and ME were determined by the total collection and the difference method. In experiment 2, 22 crossbred barrows (Duroc × Yorkshire × Landrace, Initial BW: 41.3 ± 1.2 kg) that had a T-cannula installed in the distal ileum were assigned to a replicated 11 × 3 incomplete Latin square design, including an N-free diet and 10 sorghum diets. Each period had 5 d adaptation and 2 d ileal digesta collection. The basal endogenous N losses were measured by the N-free diet method. All diets in experiment 2 were added 0.30% titanium dioxide as an indigestible marker for calculating the ileal CP and AA digestibility. On an as-fed basis, the DE and ME contents in sorghum were 3,410 kcal/kg (2,826 to 3,794 kcal/kg) and 3,379 kcal/kg (2,785 to 3,709 kcal/kg), respectively. The best-fit prediction equation for DE and ME were DE = 6,267.945 − (1,271.154 × % tannin) − (1,109.720 × % ash) (R2 = 0.803) and ME = 51.263 + (0.976 × DE) (R2 = 0.994), respectively. The SID of CP, Lys, Met, Thr, and Trp (SIDCP, SIDLys, SIDMet, SIDThr, and SIDTrp) in 10 sorghum samples were 78.48% (69.56% to 84.23%), 74.27% (61.11% to 90.60%), 92.07% (85.16% to 95.40%), 75.46% (66.39% to 80.80%) and 87.99% (84.21% to 92.37%), respectively. The best prediction equations for SID of CP and the first four limiting AAs were as following: SIDCP = 93.404 − (21.026 × % tannin) (R2 = 0.593), SIDCP = 42.922 − (4.011 × % EE) + (151.774 × % Met) (R2 = 0.696), SIDLys = 129.947 − (670.760 × % Trp) (R2 = 0.821), SIDMet = 111.347 − (232.298 × % Trp) (R2 = 0.647), SIDThr = 55.187 + (3.851 × % ADF) (R2 = 0.609) and SIDTrp = 95.676 − (10.824 × % tannin) (R2 = 0.523), respectively. Overall, tannin and ash are the first and second predictors of DE and ME values of sorghum, respectively, and the tannin, EE, Trp, ash, CF, and ADF can be used as the key predictors for SID of CP and first four limiting AAs.
Funder
National Key Research and Development Program of China
Ministry of Agriculture and Rural Affairs
Science and Technology Innovation Program of Hunan Province
Natural Science Foundation of Hunan Province
Key Project of Science and Technology of Yunnan Province
Open Fund of Key Laboratory of Agro-ecological Processes in Subtropical Region, Chinese Academy of Sciences
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science