Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers

Author:

Liu Jing123,Lin Shiying4,Wu Shuqin4,Lin Qingjie4,Fan Zitao4,Wang Changkang4,Ye Dingcheng123,Guo Pingting4ORCID

Affiliation:

1. Institute , Fuzhou 350013 , China

2. of Animal , Fuzhou 350013 , China

3. Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences , Fuzhou 350013 , China

4. College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University , Fuzhou 350002 , China

Abstract

Abstract New feed additives as antibiotics substitutes are in urgent need in poultry production. Nano-composite of copper and carbon (NCCC), a novel copper donor with stronger antibacterial properties, is expected to promote broiler growth and diminish the negative effects of excess copper (Cu). Hence, the purpose of this study is to investigate the effects of NCCC on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. A total of 240 1-d-old male yellow-feathered broilers were selected and randomly divided into four groups, with five replications per group and 12 birds per replication. The CON group was fed corn-soybean basal diets, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial lasted for 63 d. The results demonstrated that only 200 mg/kg NCCC addition significantly increased the Cu content in serum and feces, and liver Cu content linearly increased with NCCC dosage increment (P < 0.05). Meanwhile, NCCC supplementation did not alter the growth performance, slaughter performance, immune organ indexes, and liver antioxidant ability of broilers (P > 0.05), but optimized the serum cytokine pattern by elevating the level of serum IL-10 (P < 0.05), and there were linear and quadratic increases in serum IL-4 with NCCC dosage increment (P < 0.05). On the whole, in spite of no impact on growth performance, 50 mg/kg NCCC was optimal to supplement in chicken diets due to the rise of serum IL-10 level and no extra environmental pollution and tissue residues.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Modern Poultry Industry System of Fujian Province

Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3