Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms

Author:

Aminullah Noor1ORCID,Prabhu T. M.1ORCID,Naik Jaya2ORCID,Suresh B. N.3ORCID,Indresh H. C.2ORCID

Affiliation:

1. Department of Animal Nutrition, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, Karnataka, India.

2. Department of Poultry Science, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, Karnataka, India.

3. Department of Livestock Farm Complex, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hassan, Karnataka, India.

Abstract

Background and Aim: Copper (Cu) is a vital mineral involved in various physiological and biochemical processes, growth, and productivity of animals and birds. Birds can absorb only a small fraction of Cu and most is excreted, contaminating soil and aquatic environment which is toxic for microorganisms, plants, animals, and humans. This study evaluated the possibility of use of organic and nanoparticles sources of Cu to reduce supplementation level without compromising the performance of breeder hens. Materials and Methods: A total of 224 Swarnadhara breeder hens were divided into seven treatment groups having four replicates in each. The basal diet (control) containing 20 ppm inorganic Cu (100% of standard recommendation) and six test diets containing 20, 15, and 10 ppm (100, 75, and 50% of standard recommendation) from Cu organic source, and 15, 10, and 5 ppm (75, 50, and 25%) from Cu nanoparticles (Cu-NP), were prepared and offered to respective treatment groups for a duration of 20 weeks. Results: The hen day egg production, hen housed egg production, feed conversion ratio egg mass, albumen index, yolk index, total fat content, and color score were not affected by the source and inclusion level of Cu. The feed intake was significantly (p<0.05) lower at 15 ppm and egg weight was significantly (p<0.05) higher at 10 ppm Cu-NP supplemental level, but was non-significant in other treatment groups compared to control. The body weight gain was significantly (p<0.05) higher at 20 ppm organic and 15 ppm Cu-NP inclusion. The egg shape index and Haugh unit were significantly (p<0.05) lower at 10 and 15 ppm of Cu-NP inclusion level, respectively. The shell thickness was improved (p<0.05) at 20 and 15 ppm organic and 15 and 10 ppm Cu-NP inclusion level. The egg fertility rate was shown to be significantly (p<0.05) higher at 20 ppm organic Cu inclusion group, but the hatchability based on total number of eggs set improved (p<0.05) at 20 and 15 ppm organic Cu inclusion level while all treatment groups were comparable to control. The hatchability of fertilized egg and chick's quality significantly (p<0.05) improved, while embryonic and chick mortality after hatching before-sorting was significantly (p<0.05) reduced at 15 ppm of Cu-NP inclusion group. Conclusion: It was concluded that the inorganic Cu can be replaced with 50% of organic or 25% of nanoparticles form of Cu without jeopardizing the breeder hens' productivity, egg quality characteristics, hatchability, and progeny.

Funder

Indian Council of Agricultural Research

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3