Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-κB and Nrf2 pathways

Author:

Fang Y1,Gao F2,Liu Z3

Affiliation:

1. Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, 85 WuJin Road, Shanghai, China

2. Department of Respiratory Medicine, Shanghai Construction Group Hospital, No. 666, Zhongshan North 1st Road, Shanghai, China

3. Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 85 WuJing Road, Shanghai, China

Abstract

Summary Objective To investigate the role of angiotensin-converting enzyme 2 (ACE2) in hyperoxic lung injury. Methods Adult mice were exposed to 95% O2 for 72 h to induce hyperoxic lung injury, and simultaneously treated with ACE2 agonist diminazene aceturate (DIZE) or inhibitor MLN-4760. ACE2 expression/activity in lung tissue and angiotensin (Ang)-(1–7)/Ang II in bronchoalveolar lavage fluid (BALF), and the severity of hyperoxic lung injury were evaluated. The levels of inflammatory factors in BALF and lung tissue and the expression levels of phospho-p65, p65 and IkBα were measured. Oxidative parameter and antioxidant enzyme levels in lung tissue were measured to assess oxidative stress. Finally, the expression levels of nuclear factor-erythroid-2-related factor (Nrf2), NAD(P)H quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were measured using Western blotting. Results Hyperoxia treatment significantly decreased lung ACE2 expression/activity and increased the Ang II/Ang-(1–7) ratio, while co-treatment with hyperoxia and DIZE significantly increased lung ACE2 expression/activity and decreased the Ang II/Ang-(1–7) ratio. By contrast, co-treatment with hyperoxia and MLN-4760 significantly decreased lung ACE2 expression/activity and increased the Ang II/Ang-(1–7) ratio. Hyperoxia treatment induced significant lung injury, inflammatory response and oxidative stress, which were attenuated by DIZE but aggravated by MLN-4760. The NF-κB pathways were activated by hyperoxia and MLN-4760 but inhibited by DIZE. The Nrf2 pathway and its downstream proteins NQO1 and HO-1 were activated by DIZE but inhibited by MLN-4760. Conclusion Activation of ACE2 can reduce the severity of hyperoxic lung injury by inhibiting inflammatory response and oxidative stress. ACE2 can inhibit the NF-κB pathway and activate the Nrf2/HO-1/NQO1 pathway, which may be involved in the underlying mechanism.

Funder

Shanghai Pujiang Program

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3