TrajPy: empowering feature engineering for trajectory analysis across domains

Author:

Moreira-Soares Maurício12ORCID,Mossmann Eduardo34,Travasso Rui D M5,Bordin José Rafael4

Affiliation:

1. Oslo Centre for Biostatistics and Epidemiology, University of Oslo , Oslo, 0373, Norway

2. Centre for Bioinformatics, University of Oslo , Oslo, 0373, Norway

3. School of Engineering and Computer Science, Victoria University of Wellington , Wellington, 6012, New Zealand

4. Department of Physics, Institute of Physics and Mathematics, Universidade Federal de Pelotas , Pelotas, 96160-000, Brazil

5. CFisUC, Department of Physics, University of Coimbra , Coimbra, 3004-516, Portugal

Abstract

Abstract Motivation Trajectories, which are sequentially measured quantities that form a path, are an important presence in many different fields, from hadronic beams in physics to electrocardiograms in medicine. Trajectory analysis requires the quantification and classification of curves, either by using statistical descriptors or physics-based features. To date, no extensive and user-friendly package for trajectory analysis has been readily available, despite its importance and potential application across various domains. Results We have developed TrajPy, a free, open-source Python package that serves as a complementary tool for empowering trajectory analysis. This package features a user-friendly graphical user interface and offers a set of physical descriptors that aid in characterizing these complex structures. TrajPy has already been successfully applied to studies of mitochondrial motility in neuroblastoma cell lines and the analysis of in silico models for cell migration, in combination with image analysis. Availability and implementation The TrajPy package is developed in Python 3 and is released under the GNU GPL-3.0 license. It can easily be installed via PyPi, and the development source code is accessible at the repository: https://github.com/ocbe-uio/TrajPy/. The package release is also automatically archived with the DOI 10.5281/zenodo.3656044.

Funder

FCT—Fundação para a Ciência e Tecnologia

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3