Abnormal Water Quality Monitoring Based on Visual Sensing of Three-Dimensional Motion Behavior of Fish

Author:

Cheng Shuhong,Zhao Kaopeng,Zhang Dianfan

Abstract

In the context of the problem of water pollution, the movement characteristics and patterns of fish under normal water quality and abnormal water quality are clearly different. This paper proposes a biological water quality monitoring method combining three-dimensional motion trajectory synthesis and integrated learning. The videos of the fish movement are captured by two cameras, and the Kuhn-Munkres (KM) algorithm is used to match the target points of the fish body. The Kalman filter is used to update the current state and find the optimal tracking position as the tracking result. The Kernelized Correlation Filters (KCF) algorithm compensates the targets that are lost in the tracking process and collision or occlusion in the movement process, reducing the errors caused by illumination, occlusion and water surface fluctuation effectively. This algorithm can directly obtain the target motion trajectory, avoiding the re-extraction from the centroid point in the image sequence, which greatly improves the efficiency. In order to avoid the one-sidedness of the two-dimensional trajectory, the experiment combines the pixel coordinates of different perspectives into three-dimensional trajectory pixel coordinates, so as to provide a more authentic fish swimming trajectory. We then select a representative positive and negative sample data set; the number of data sets should have symmetry. The base classifier capable of identifying different water quality is obtained by training. Finally, support vector machine(SVM), eXtreme Gradient Boosting (XGBoost) and pointnet based classifiers are combined into strong classifiers through integrated learning. The experimental results show that the integrated learning model can reflect the water quality effectively and accurately under the three-dimensional trajectory pixel coordinates of fish, and the recognition rate of water quality is above 95%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavioral response of fish under ammonia nitrogen stress based on machine vision;Engineering Applications of Artificial Intelligence;2024-02

2. A Vision-Based Approach to Autonomous Landing of an eVTOL Aircraft in GPS-Denied Environments;2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC);2023-10-01

3. A novel detection model and platform for dead juvenile fish from the perspective of multi-task;Multimedia Tools and Applications;2023-08-17

4. Analysis of player tracking data extracted from football match feed;Revista Română de Informatică și Automatică;2023-06-29

5. An underwater image enhancement model for domain adaptation;Frontiers in Marine Science;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3