Deep learning predicts the impact of regulatory variants on cell-type-specific enhancers in the brain

Author:

Zheng An1ORCID,Shen Zeyang23ORCID,Glass Christopher K24ORCID,Gymrek Melissa14ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of California San Diego , La Jolla, CA 92093, USA

2. Department of Cellular and Molecular Medicine, University of California San Diego , La Jolla, CA 92093, USA

3. Department of Bioengineering, University of California San Diego , La Jolla, CA 92093, USA

4. Department of Medicine, University of California San Diego , La Jolla, CA 92093, USA

Abstract

Abstract Motivation Previous studies have shown that the heritability of multiple brain-related traits and disorders is highly enriched in transcriptional enhancer regions. However, these regions often contain many individual variants, while only a subset of them are likely to causally contribute to a trait. Statistical fine-mapping techniques can identify putative causal variants, but their resolution is often limited, especially in regions with multiple variants in high linkage disequilibrium. In these cases, alternative computational methods to estimate the impact of individual variants can aid in variant prioritization. Results Here, we develop a deep learning pipeline to predict cell-type-specific enhancer activity directly from genomic sequences and quantify the impact of individual genetic variants in these regions. We show that the variants highlighted by our deep learning models are targeted by purifying selection in the human population, likely indicating a functional role. We integrate our deep learning predictions with statistical fine-mapping results for 8 brain-related traits, identifying 63 distinct candidate causal variants predicted to contribute to these traits by modulating enhancer activity, representing 6% of all genome-wide association study signals analyzed. Overall, our study provides a valuable computational method that can prioritize individual variants based on their estimated regulatory impact, but also highlights the limitations of existing methods for variant prioritization and fine-mapping. Availability and implementation The data underlying this article, nucleotide-level importance scores, and code for running the deep learning pipeline are available at https://github.com/Pandaman-Ryan/AgentBind-brain. Contact mgymrek@ucsd.edu Supplementary information Supplementary data are available at Bioinformatics Advances online.

Funder

National Institutes of Health

National Institute of Diabetes and Digestive and Kidney Diseases

National Institute of Neurological Disorders and Stroke

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3