DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays

Author:

Chen Zhanlin1,Zhang Jing2,Liu Jason3,Dai Yi2,Lee Donghoon4,Min Martin Renqiang5,Xu Min6,Gerstein Mark137

Affiliation:

1. Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA

2. Department of Computer Science, University of California, Irvine, CA 92617, USA

3. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA

4. Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA

5. NEC Laboratories America, Princeton, NJ 08540, USA

6. Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

7. Department of Computer Science, Yale University, New Haven, CT 06520, USA

Abstract

Abstract Motivation Mapping distal regulatory elements, such as enhancers, is a cornerstone for elucidating how genetic variations may influence diseases. Previous enhancer-prediction methods have used either unsupervised approaches or supervised methods with limited training data. Moreover, past approaches have implemented enhancer discovery as a binary classification problem without accurate boundary detection, producing low-resolution annotations with superfluous regions and reducing the statistical power for downstream analyses (e.g. causal variant mapping and functional validations). Here, we addressed these challenges via a two-step model called Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays (DECODE). First, we employed direct enhancer-activity readouts from novel functional characterization assays, such as STARR-seq, to train a deep neural network for accurate cell-type-specific enhancer prediction. Second, to improve the annotation resolution, we implemented a weakly supervised object detection framework for enhancer localization with precise boundary detection (to a 10 bp resolution) using Gradient-weighted Class Activation Mapping. Results Our DECODE binary classifier outperformed a state-of-the-art enhancer prediction method by 24% in transgenic mouse validation. Furthermore, the object detection framework can condense enhancer annotations to only 13% of their original size, and these compact annotations have significantly higher conservation scores and genome-wide association study variant enrichments than the original predictions. Overall, DECODE is an effective tool for enhancer classification and precise localization. Availability and implementation DECODE source code and pre-processing scripts are available at decode.gersteinlab.org. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NIMH

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3