Pollock: fishing for cell states

Author:

Storrs Erik P12,Zhou Daniel Cui12,Wendl Michael C12,Wyczalkowski Matthew A12,Karpova Alla12ORCID,Wang Liang-Bo12,Li Yize12ORCID,Southard-Smith Austin12,Jayasinghe Reyka G12,Yao Lijun12,Liu Ruiyang12,Wu Yige12,Terekhanova Nadezhda V12,Zhu Houxiang12,Herndon John M34,Puram Sid1,Chen Feng1,Gillanders William E34,Fields Ryan C34,Ding Li124ORCID

Affiliation:

1. Department of Medicine, Washington University in St. Louis , St. Louis, MO 63110, USA

2. McDonnell Genome Institute, Washington University in St. Louis , St. Louis, MO 63108, USA

3. Department of Surgery, Washington University in St. Louis , St. Louis, MO 63110, USA

4. Siteman Cancer Center, Washington University in St. Louis , St. Louis, MO 63110, USA

Abstract

AbstractMotivationThe use of single-cell methods is expanding at an ever-increasing rate. While there are established algorithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the availability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell type classifications.ResultsPollock performs comparably to existing classification methods, while offering easily deployable pretrained classification models across a wide variety of tissue and data types. Additionally, it demonstrates utility in immune pan-cancer analysis.Availability and implementationSource code and documentation are available at https://github.com/ding-lab/pollock. Pretrained models and datasets are available for download at https://zenodo.org/record/5895221.Supplementary informationSupplementary data are available at Bioinformatics Advances online.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3