Batch correction of single-cell sequencing data via an autoencoder architecture

Author:

Danino Reut1ORCID,Nachman Iftach2,Sharan Roded1ORCID

Affiliation:

1. Blavatnik School of Computer Science, Tel Aviv University , Tel Aviv 6997801, Israel

2. School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 6997801, Israel

Abstract

Abstract Motivation Technical differences between gene expression sequencing experiments can cause variations in the data in the form of batch effect biases. These do not represent true biological variations between samples and can lead to false conclusions or hinder the ability to integrate multiple datasets. Since there is a growing need for the joint analysis of single-cell sequencing datasets from different sources, there is also a need to correct the resulting batch effects while maintaining the true biological variations in the data. Results We developed a semi-supervised deep learning architecture called Autoencoder-based Batch Correction (ABC) for integrating single-cell sequencing datasets. Our method removes batch effects through a guided process of data compression using supervised cell type classifier branches for biological signal retention. It aligns the different batches using an adversarial training approach. We comprehensively evaluate the performance of our method using four single-cell sequencing datasets and multiple measures for batch effect removal and biological variation conservation. ABC outperforms 10 state-of-the-art methods for this task including Seurat, scGen, ComBat, scanorama, scVI, scANVI, AutoClass, Harmony, scDREAMER, and CLEAR, correcting various types of batch effects while preserving intricate biological variations.

Funder

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Reference20 articles.

1. scdreamer for atlas-level integration of single-cell datasets using deep generative model paired with adversarial classifier;Ajita;Nat Commun,2023

2. The shape of gene expression distributions matter: how incorporating distribution shape improves the interpretation of cancer transcriptomic data;de Torrenté;BMC Bioinformatics,2020

3. On hematopoietic stem cell fate;Donald;Immunity,2007

4. Autoencoders;Bank,2023

5. Generative adversarial networks;Goodfellow;Adv Neural Inf Process Syst,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emerging Topics and Future Directions;SpringerBriefs in Applied Sciences and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3