1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: D. Precup, Y.W. Teh (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR, International Convention Centre, Sydney, Australia (2017)
2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: I. Guyon, G. Dror, V. Lemaire, G. Taylor, D. Silver (eds.) Proceedings of ICML Workshop on Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, vol. 27, pp. 37–49. PMLR, Bellevue, Washington, USA (2012)
3. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from examples without local minima. Neural Netw. 2(1), 53–58 (1989). https://doi.org/10.1016/0893-6080(89)90014-2
4. Bank, D., Giryes, R.: An ETF view of dropout regularization. In: 31st British Machine Vision Conference 2020, BMVC 2020, Virtual Event, UK, September 7–10, 2020. BMVA Press (2020). https://www.bmvc2020-conference.com/assets/papers/0044.pdf
5. Belghazi, M.I., Rajeswar, S., Mastropietro, O., Rostamzadeh, N., Mitrovic, J., Courville, A.: Hierarchical adversarially learned inference (2018)