dingo: a Python package for metabolic flux sampling

Author:

Chalkis Apostolos1ORCID,Fisikopoulos Vissarion12ORCID,Tsigaridas Elias13,Zafeiropoulos Haris14ORCID

Affiliation:

1. GeomScale.org

2. Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Panepistimioupolis, Ilisia ,16122 Athens, Greece

3. Inria Paris and IMJ-PRG, Sorbonne Université and Paris Université , France

4. Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , 3000 Leuven, Belgium

Abstract

Abstract We present dingo, a Python package that supports a variety of methods to sample from the flux space of metabolic models, based on state-of-the-art random walks and rounding methods. For uniform sampling, dingo’s sampling methods provide significant speed-ups and outperform existing software. Indicatively, dingo can sample from the flux space of the largest metabolic model up to now (Recon3D) in less than a day using a personal computer, under several statistical guarantees; this computation is out of reach for other similar software. In addition, dingo supports common analysis methods, such as flux balance analysis and flux variability analysis, and visualization components. dingo contributes to the arsenal of tools in metabolic modelling by enabling flux sampling in high dimensions (in the order of thousands). Availability and implementation The dingo Python library is available in GitHub at https://github.com/GeomScale/dingo and the data underlying this article are available in https://doi.org/10.5281/zenodo.10423335.

Funder

Google Summer of Code

Publisher

Oxford University Press (OUP)

Reference18 articles.

1. Recon3D enables a three-dimensional view of gene variation in human metabolism;Brunk;Nat Biotechnol,2018

2. Fast MCMC sampling algorithms on polytopes;Chen;J Mach Learn Res,2018

3. A comparison of Monte Carlo sampling methods for metabolic network models;Fallahi;PLoS One,2020

4. Inference from iterative simulation using multiple sequences;Gelman;Statist Sci,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3