NSPA: characterizing the disease association of multiple genetic interactions at single-subject resolution

Author:

Sha Zhendong1ORCID,Chen Yuanzhu1,Hu Ting1ORCID

Affiliation:

1. School of Computing, Queen’s University , Kingston, Ontario, Canada K7L 2N8

Abstract

Abstract Motivation The interaction between genetic variables is one of the major barriers to characterizing the genetic architecture of complex traits. To consider epistasis, network science approaches are increasingly being used in research to elucidate the genetic architecture of complex diseases. Network science approaches associate genetic variables’ disease susceptibility to their topological importance in the network. However, this network only represents genetic interactions and does not describe how these interactions attribute to disease association at the subject-scale. We propose the Network-based Subject Portrait Approach (NSPA) and an accompanying feature transformation method to determine the collective risk impact of multiple genetic interactions for each subject. Results The feature transformation method converts genetic variants of subjects into new values that capture how genetic variables interact with others to attribute to a subject’s disease association. We apply this approach to synthetic and genetic datasets and learn that (1) the disease association can be captured using multiple disjoint sets of genetic interactions and (2) the feature transformation method based on NSPA improves predictive performance comparing with using the original genetic variables. Our findings confirm the role of genetic interaction in complex disease and provide a novel approach for gene–disease association studies to identify genetic architecture in the context of epistasis. Availability and implementation The codes of NSPA are now available in: https://github.com/MIB-Lab/Network-based-Subject-Portrait-Approach Contact ting.hu@queensu.ca Supplementary information Supplementary data are available at Bioinformatics Advances online.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3