Optimizer’s dilemma: optimization strongly influences model selection in transcriptomic prediction

Author:

Crawford Jake1,Chikina Maria2,Greene Casey S34ORCID

Affiliation:

1. Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA 19104, United States

2. Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA 15260, United States

3. Department of Biomedical Informatics, University of Colorado School of Medicine , Aurora, CO 80045, United States

4. Center for Health AI, University of Colorado School of Medicine , Aurora, CO 80045, United States

Abstract

Abstract Motivation Most models can be fit to data using various optimization approaches. While model choice is frequently reported in machine-learning-based research, optimizers are not often noted. We applied two different implementations of LASSO logistic regression implemented in Python’s scikit-learn package, using two different optimization approaches (coordinate descent, implemented in the liblinear library, and stochastic gradient descent, or SGD), to predict mutation status and gene essentiality from gene expression across a variety of pan-cancer driver genes. For varying levels of regularization, we compared performance and model sparsity between optimizers. Results After model selection and tuning, we found that liblinear and SGD tended to perform comparably. liblinear models required more extensive tuning of regularization strength, performing best for high model sparsities (more nonzero coefficients), but did not require selection of a learning rate parameter. SGD models required tuning of the learning rate to perform well, but generally performed more robustly across different model sparsities as regularization strength decreased. Given these tradeoffs, we believe that the choice of optimizers should be clearly reported as a part of the model selection and validation process, to allow readers and reviewers to better understand the context in which results have been generated. Availability and implementation The code used to carry out the analyses in this study is available at https://github.com/greenelab/pancancer-evaluation/tree/master/01_stratified_classification. Performance/regularization strength curves for all genes in the Vogelstein et al. (2013) dataset are available at https://doi.org/10.6084/m9.figshare.22728644.

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3