Widespread redundancy in -omics profiles of cancer mutation states

Author:

Crawford JakeORCID,Christensen Brock C.ORCID,Chikina MariaORCID,Greene Casey S.ORCID

Abstract

Abstract Background In studies of cellular function in cancer, researchers are increasingly able to choose from many -omics assays as functional readouts. Choosing the correct readout for a given study can be difficult, and which layer of cellular function is most suitable to capture the relevant signal remains unclear. Results We consider prediction of cancer mutation status (presence or absence) from functional -omics data as a representative problem that presents an opportunity to quantify and compare the ability of different -omics readouts to capture signals of dysregulation in cancer. From the TCGA Pan-Cancer Atlas that contains genetic alteration data, we focus on RNA sequencing, DNA methylation arrays, reverse phase protein arrays (RPPA), microRNA, and somatic mutational signatures as -omics readouts. Across a collection of genes recurrently mutated in cancer, RNA sequencing tends to be the most effective predictor of mutation state. We find that one or more other data types for many of the genes are approximately equally effective predictors. Performance is more variable between mutations than that between data types for the same mutation, and there is little difference between the top data types. We also find that combining data types into a single multi-omics model provides little or no improvement in predictive ability over the best individual data type. Conclusions Based on our results, for the design of studies focused on the functional outcomes of cancer mutations, there are often multiple -omics types that can serve as effective readouts, although gene expression seems to be a reasonable default option.

Funder

National Cancer Institute

National Human Genome Research Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3