Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells

Author:

Sanyour Hanna J12,Li Na12,Rickel Alex P12,Childs Josh D12,Kinser Courtney N12,Hong Zhongkui12

Affiliation:

1. Department of Biomedical Engineering, University of South Dakota, 4800 N Career Ave, Suite 221, Sioux Falls, SD, USA

2. BioSNTR, Sioux Falls, SD, USA

Abstract

Aims Cholesterol not only deposits in foam cells at the atherosclerotic plaque, but also plays an important role as a regulator of cell migration in atherogenesis. In addition, the progression of atherosclerosis leads to arterial wall stiffening, and thus altering the micromechanical environment of vascular smooth muscle cells (VSMCs) in vivo. Our studies aim to test the hypothesis that membrane cholesterol and substrate stiffness co-ordinate to regulate VSMCs biomechanics, and thus potentially regulate VSMCs migration and atherosclerotic plaque formation. Methods and results Methyl-β-cyclodextrin was used to manipulate membrane cholesterol content in VSMCs isolated from the descending thoracic aorta of male Sprague-Dawley rats and cultured on Type I collagen-coated polyacrylamide gel substrates with varying stiffness. Atomic force microscopy (AFM) was used to determine VSMCs stiffness and integrin-fibronectin (FN) adhesion. The alignment of submembranous actin filaments was visualized with AFM and confocal microscopy. The constriction force of rat aorta was measured ex vivo using a multi-wire myograph system. Our results demonstrated that cholesterol-depletion and substrate-softening induced a significant decrease in VSMCs stiffness and adhesion to FN, as well as cytoskeletal disorganization. In addition, the contractile force of rat aorta was reduced upon cholesterol-depletion. Cholesterol-enrichment resulted in an increase in stiffness, adhesion to FN, cytoskeletal organization of VSMCs compared with the cholesterol-depleted cells, and enhanced contractile force of rat aortas compared with the cholesterol-depleted vessel rings. Conclusion Cell membrane cholesterol and substrate stiffness synergistically affect VSMCs elastic modulus (E-modulus) by regulating the organization of the actin cytoskeleton. Except for the 3.5 kPa gel substrate, cholesterol-depletion decreased VSMCs-FN adhesion force, adhesion loading rate, cytoskeletal orientation, and E-modulus compared with the control VSMCs. Conversely, cholesterol-enrichment significantly increased cytoskeleton orientation, stiffness, and VSMCs-FN cell adhesion force compared with both control and cholesterol-depleted VSMCs on a soft substrate.

Funder

American Heart Association

South Dakota Board of Regents

National Science Foundation

EPSCoR Cooperative Agreement

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3