Affiliation:
1. College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
Abstract
Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 μm to 14 μm. This range closely aligns with the far-infrared band (3 μm to 15 μm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase–cyclic guanosine monophosphate pathway and the renin–angiotensin–aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR’s aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension.
Funder
R&D Program of the Beijing Municipal Education Commission
Beijing University of Agriculture Young Teachers’ Scientific Research Innovation Ability Enhancement Program
Beijing University of Agriculture Youth Science Fund
Classified Development of Municipal Colleges and Universities—Construction of Urban Agriculture and Forestry Characteristic teachers