Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress

Author:

Sharma Pratibha12,Xu Jihong11,Williams Katie3,Easley Michelle4,Elder J Brad4,Lonser Russell43,Lang Frederick F5,Lapalombella Rosa3,Sampath Deepa36,Puduvalli Vinay K12ORCID

Affiliation:

1. Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

2. Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

3. Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

4. Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA

5. Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

6. Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

Abstract

Abstract Background Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism, and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. Methods Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion, and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs), and mouse and human ex vivo organotypic glioma slice culture models. Results Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in the reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage, and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status, or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. Conclusions Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.

Funder

National Cancer Institute

Salvino Family & Accenture Brain Cancer Research Fund

Ohio State University Cancer Center

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3