α-Ketoglutarate supplementation and NAD+ modulation enhance metabolic rewiring and radiosensitization in SLC25A1 inhibited cancer cells

Author:

Xiang Kexu,Kunin Mikhail,Larafa SafaORCID,Busch Maike,Dünker NicoleORCID,Jendrossek VerenaORCID,Matschke JohannORCID

Abstract

AbstractMetabolic rewiring is the result of the increasing demands and proliferation of cancer cells, leading to changes in the biological activities and responses to treatment of cancer cells. The mitochondrial citrate transport protein SLC25A1 is involved in metabolic reprogramming offering a strategy to induce metabolic bottlenecks relevant to radiosensitization through the accumulation of the oncometabolite D-2-hydroxyglutarate (D-2HG) upon SLC25A1 inhibition (SLC25A1i). Previous studies have revealed the comparative effects of SLC25A1i or cell-permeable D-2HG (octyl-D-2HG) treatments on DNA damage induction and repair, as well as on energy metabolism and cellular function, which are crucial for the long-term survival of irradiated cells. Here, α-ketoglutarate (αKG), the precursor of D-2HG, potentiated the effects observed upon SLC25A1i on DNA damage repair, cell function and long-term survival in vitro and in vivo, rendering NCI-H460 cancer cells more vulnerable to ionizing radiation. However, αKG treatment alone had little effect on these phenotypes. In addition, supplementation with nicotinamide (NAM), a precursor of NAD (including NAD+ and NADH), counteracted the effects of SLC25A1i or the combination of SLC25A1i with αKG, highlighting a potential importance of the NAD+/NADH balance on cellular activities relevant to the survival of irradiated cancer cells upon SLC25A1i. Furthermore, inhibition of histone lysine demethylases (KDMs), as a major factor affected upon SLC25A1i, by JIB04 treatment alone or in combination with αKG supplementation phenocopied the broad effects on mitochondrial and cellular function induced by SLC25A1i. Taken together, αKG supplementation potentiated the effects on cellular processes observed upon SLC25A1i and increased the cellular demand for NAD to rebalance the cellular state and ensure survival after irradiation. Future studies will elucidate the underlying metabolic reprogramming induced by SLC25A1i and provide novel therapeutic strategies for cancer treatment.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3