Semi-supervised target classification in multi-frequency echosounder data
Author:
Affiliation:
1. UiT The Arctic University of Norway, P.O. Box 6050, Langnes Tromsø 9037, Norway
2. Norwegian Computing Center, P.O. Box 114, Blindern, Oslo 0314, Norway
3. Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
Abstract
Funder
Research Council of Norway
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Link
https://academic.oup.com/icesjms/article-pdf/78/7/2615/41747081/fsab140.pdf
Reference35 articles.
1. Lagrangean-based combinatorial optimization for large-scale S3VMs;Bagattini;IEEE Transactions on Neural Networks and Learning Systems,2017
2. Assessing a mixture model for clustering with the integrated completed likelihood;Biernacki;IEEE Transactions on Pattern Analysis and Machine Intelligence,2000
3. Acoustic classification in multifrequency echosounder data using deep convolutional neural networks;Brautaset;ICES Journal of Marine Science,2020
4. A systematic study of the class imbalance problem in convolutional neural networks;Buda;Neural Networks,2018
5. Deep clustering for unsupervised learning of visual features;Caron,2018
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semi-supervised learning advances species recognition for aquatic biodiversity monitoring;Frontiers in Marine Science;2024-05-28
2. Detection of free-swimming fish passing through a narrow passage using MHz-band ultrasonic reflected and transmitted waves;Japanese Journal of Applied Physics;2024-05-01
3. Developing a hybrid model with multiview learning for acoustic classification of Atlantic herring schools;Limnology and Oceanography: Methods;2024-04-10
4. Addressing class imbalance in deep learning for acoustic target classification;ICES Journal of Marine Science;2023-10-25
5. Acoustic fish species identification using deep learning and machine learning algorithms: A systematic review;Fisheries Research;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3