Investigating the suitability of the Slope Sea for Atlantic bluefin tuna spawning using a high-resolution ocean circulation model

Author:

Rypina Irina I1ORCID,Chen Ke1,Hernández Christina M23,Pratt Lawrence J1,Llopiz Joel K2

Affiliation:

1. Physical Oceanography Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543, USA

2. Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543, USA

3. MIT-WHOI Joint Program, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543, USA

Abstract

Abstract Motivated by recent evidence of Atlantic bluefin tuna spawning in the Slope Sea, we investigated the spatio-temporal distribution of oceanographic conditions that are conducive to successful spawning by bluefin in this region. Specifically, we considered advection patterns and water temperatures based on a new high-resolution ocean circulation model. After validating model velocities and temperatures using observations, three criteria were used to evaluate the success of simulated bluefin spawning during 2013: water temperature at spawning locations, mean water temperature along larval trajectories, and larval residence time within the Slope Sea. Analyses of satellite-based, decade-long (2008–2017) datasets suggest that conditions, specifically water temperatures and advection patterns, in the Slope Sea in 2013 were representative of typical years. The temperature criteria are more frequently satisfied in the southern and southwestern parts of the domain, whereas the residence time criterion favors more northern areas further from the Gulf Stream. The probability map of successful spawning locations shows a maximum near the northwestern bight of the Slope Sea. Spawning success is near-zero through most of June, increases in July, and peaks in early-to-mid August. Overall, water temperatures and retentive capabilities suggest that the Slope Sea provided suitable conditions for successful spawning of bluefin during 2013.

Funder

US National Science Foundation

NSF

National Aeronautics and Space Administration

NASA

NSF Graduate Research Fellowship

Adelaide & Charles Link Foundation

Woods Hole Oceanographic Institution’s Ocean Life Institute

Cooperative Institute for the North Atlantic Region

CINAR

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3