Individual variability in sub-Arctic krill material properties, lipid composition, and other scattering model inputs affect acoustic estimates of their population

Author:

Lucca Brandyn M1ORCID,Ressler Patrick H2,Harvey H Rodger3ORCID,Warren Joseph D1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY 11968, USA

2. NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, Washington DC 98115, USA

3. Ocean and Earth Sciences, Old Dominion University, Norfolk, VA 23529, USA

Abstract

Abstract Target strength model inputs including morphometry, material properties, lipid composition, and in situ orientations were measured for sub-Arctic krill (Euphausia pacifica, Thysanoessa spinifera, T. inermis, and T. raschii) in the eastern Bering Sea (EBS, 2016) and Gulf of Alaska (GOA, 2017). Inter-species and -regional animal lengths were significantly different (F1,680 = 114.10, p < 0.01), while animal shape was consistent for all species measured. The polar lipid phosphatidycholine was the dominant lipid, comprising 86 ± 16% (mean ± SD) and 56 ± 22% of total lipid mass in GOA and EBS krill, respectively. Krill density contrasts varied by species and region rather than with morphometry, lipid composition, or local chla fluorescence. Mean in situ krill orientation was 1 ± 31°, with 25% of observed krill within ±5° of broadside incidence. Modelled target strength sensitivity was frequency independent for variations in material properties but was primarily sensitive to morphometry and orientation at lower (38 kHz) and higher (200 kHz) frequencies, respectively. Measured variability in material properties corresponded to an order of magnitude difference in acoustic estimates of biomass at 120 kHz. These results provide important inputs and constraints for acoustic scattering models of ecologically important sub-Arctic krill species.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference80 articles.

1. Sexual dimorphism in body shape of Antarctic krill (Euphausia superba) and its influence on target strength;Amakasu;Polar Science,2011

2. The Bering Sea: a dynamic food web perspective;Aydin;Deep-Sea Research Part II: Topical Studies in Oceanography,2007

3. Fitting linear-mixed effects models using lme4;Bates;Journal of Statistical Software,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3