Variability in the density and sound-speed of coastal zooplankton and nekton

Author:

Forman Krissy A.1,Warren Joseph D.1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

Abstract Forman, K. A., and Warren, J. D. 2010. Variability in the density and sound-speed of coastal zooplankton and nekton. – ICES Journal of Marine Science, 67: 10–18. Acoustic sampling techniques provide an advantage over traditional net-sampling by increasing scientist ability to survey a large area in a relatively short period, as well as providing higher-resolution data in the vertical and horizontal dimensions. To convert acoustic data into measures of biological organisms, physics-based scattering models are often used. Such models use several parameters to predict the amount of sound scattered by a fluid-like or weakly scattering animal. Two important input parameters are the density (g) and sound-speed (h) contrasts of the animal and the surrounding seawater. The density and sound-speed contrasts were measured for coastal zooplankton and nekton species including shrimps (Palaemonetes pugio and Crangon septemspinosa), fish (Fundulus majalis and Fundulus heteroclitus), and polychaetes (Nereis succinea and Glycera americana) along with multiple physiological and environmental variables. Factors such as animal size, feeding status, fecundity, gender, and maturity caused variations in g. The variations in g observed for these animals could lead to large differences (or uncertainties) in abundance estimates based on acoustic scattering models and field-collected backscatter data. It may be important to use a range of values for g and h in the acoustic scattering models used to convert acoustic data into estimates of the abundance of marine organisms.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference27 articles.

1. Towards the acoustic estimation of jellyfish abundance;Brierley;Marine Ecology Progress Series,2005

2. Role of lipids in the maintenance of neutral buoyancy by zooplankton;Campbell;Marine Ecological Progress Series,2003

3. Inference of material properties of zooplankton from acoustic and resistivity measurements;Chu;ICES Journal of Marine Science,2000

4. Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters;Chu;ICES Journal of Marine Science,2005

5. Measurements of the material properties of live marine organisms and their influence on acoustic scattering;Chu;Proceedings of the OCEANS 2000 MTS/IEEE International Symposium, Providence, RI, 11–14 September 2000,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3