Physiological individual-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: insights on climate-driven life-history scheduling

Author:

Hufnagl Marc1,Peck Myron A.1

Affiliation:

1. Institute of Hydrobiology and Fisheries Science, Center for Marine and Climate Research, University of Hamburg, Olbersweg 24, D-22767 Hamburg, Germany

Abstract

AbstractHufnagl, M., and Peck, M. A. 2011. Physiological individual-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: insights on climate-driven life-history scheduling. – ICES Journal of Marine Science, 68: 1170–1188. A physiological individual-based model for the foraging and growth of Atlantic herring (Clupea harengus) larvae was constructed, validated using laboratory and field data, tested for parameter sensitivity, and used to examine climate-driven constraints on life-history scheduling. Model scenarios examined how natural (phenological and magnitude) changes in key environmental factors (temperature, prey, and photoperiod/daylength) affected the estimates of survival and growth of spring- and autumn-spawned larvae. The most suitable hatching seasons agreed well with the periods of larval abundance in Northeast Atlantic waters. Modelled survival is unlikely in June, July, and November. Mean annual temperature, prey concentration, and composition significantly influenced larval growth of both autumn and spring spawners. The model suggested that climate-driven changes in bottom-up factors will affect spring- and autumn-spawned larvae in different ways. It is unlikely that autumn-spawning herring will be able to avoid unfavourable conditions by delaying their spawning time or by utilizing more northern spawning grounds because of limitations in daylength to larval growth and survival. Conversely, earlier spawning in spring, or later, midsummer spawning will be tightly constrained by match–mismatch dynamics between larvae and zooplankton production.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3