Impact of temperature on Downs herring (Clupea harengus) embryonic stages: First insights from an experimental approach

Author:

Toomey LolaORCID,Giraldo CarolinaORCID,Loots Christophe,Mahé Kélig,Marchal Paul,MacKenzie KirsteenORCID

Abstract

Among all human-induced pressures, ocean warming is expected to be one of the major drivers of change in marine ecosystems. Fish species are particularly vulnerable during embryogenesis. Here, the impact of temperature was assessed on embryonic stages of Atlantic herring (Clupea harengus), a species of high socio-economic interest, with a particular focus on the under-studied eastern English Channel winter-spawning component (Downs herring). Key traits linked to growth and development were experimentally evaluated at three temperatures (8°C, 10°C and 14°C), from fertilization to hatching, in standardized controlled conditions. Overall negative impacts of increased temperature were observed on fertilization rate, mean egg diameter at eyed stage, hatching rate and yolk sac volume. A faster developmental rate and a change in development stage frequency of newly hatched larvae were also observed at higher temperature. Potential parental effects were detected for four key traits (i.e. fertilization rate, eyed survival rate, mean egg diameter and hatching rate), despite a limited number of families. For instance, a large variability among families was shown in survival rate at eyed stage (between 0 and 63%). Potential relationships between maternal characteristics and embryo traits were therefore explored. We show that a substantial proportion of variance (between 31 and 70%) could be explained by the female attributes considered. More particularly, age, traits linked to life history (i.e. asymptotic average length and Brody growth rate coefficient), condition and length were important predictors of embryonic key traits. Overall, this study constitutes a stepping-stone to investigate potential consequences of warming on Downs herring recruitment and provides first insights on potential parental effects.

Funder

European Union, the French State, the French Region Hauts-de-France and Ifremer

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference153 articles.

1. Impacts of Climate Change on Marine Organisms and Ecosystems;AS Brierley;Curr Biol,2009

2. IPCC. Technical Summary. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, et al., editors. Climate Change 2021: The Physical Science Basis. 2021. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf

3. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change;L Cao;Environ Res Lett,2014

4. Responses of marine organisms to climate change across oceans;ES Poloczanska;Front Mar Sci,2016

5. Projecting global marine biodiversity impacts under climate change scenarios;WWL Cheung;Fish Fish,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3