Understanding fishery interactions and stock trajectory of yellowfin tuna exploited by Iranian fisheries in the Sea of Oman

Author:

Eighani Morteza1ORCID,Cope Jason M2,Raoufi Paria3,Naderi Reza Abbaspour4,Bach Pascal5

Affiliation:

1. National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, Hirtshals 9850 North Sea Science Park, Hirtshals, Denmark

2. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112, USA

3. Fisheries Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan , Golestan 4913815739, Iran

4. Iranian Fisheries Organization, Tehran NO. 236, Iran

5. MARBEC, University of Montpellier, Sète 34200 CNRS, Ifremer, IRD, Sete, France

Abstract

Abstract The predominant policy for remedying the world fishing crisis aims at maximum sustainable yield (MSY) by adjusting gear selectivity and fishing effort to maintain sustainable stock levels. The yellowfin tuna (Thunnus albacares) fishery in the Sea of Oman has experienced intense increases in removals since 1980, with particularly high levels since the 1990s. Here, we apply a statistical catch-at-age model to time-series of catches and fishery-dependent length composition data to obtain a preliminary and general understanding of the population dynamics of this stock since the start of the fishery in 1950–2019. Despite limited data, population models consistently indicate a sharp decline in population status since the beginning of the time-series across a variety of assumptions on stock productivity and life history. The gillnet fishery takes almost exclusively immature individuals, with high fishing intensity and removal rates. Both reference models indicate the population is essentially at the same relative stock status in 2019 (10% of unfished), but with very different future projections and higher absolute stock size when recruitment is estimated. The yellowfin tuna population in 2019 is below estimated MSY reference points (based either on unfished size or spawning output at MSY) for current relative stock size, and over the fishing intensity at MSY, indicating current overfishing. Adjusting the interactions of that fishery with the population, while continuing to collected biological composition data representative of each fleet in the fishery, will help mitigate current stock decline and provide the ability to refine future population status determination and forecasts through more informed stock assessments.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3