Modelling chance and necessity in natural systems

Author:

Planque Benjamin1ORCID,Mullon Christian2ORCID

Affiliation:

1. Institute of Marine Research, Ecosystem Processes Research Group, PO Box 6606, 9296 Tromsø, Norway

2. MARBEC, IRD; Université de Montpellier; IFREMER; CNRS; Sète, France

Abstract

Abstract Nearly 30 years ago, emerged the concept of deterministic chaos. With it came sensitivity to initial conditions, nonlinearities, and strange attractors. This constituted a paradigm shift that profoundly altered how numerical modellers approached dynamic systems. It also provided an opportunity to resolve a situation of mutual misunderstanding between scientists and non-scientists about uncertainties and predictability in natural systems. Our proposition is that this issue can be addressed in an original way which involves modelling based on the principles of chance and necessity (CaN). We outline the conceptual and mathematical principles of CaN models and present an application of the model to the Barents Sea food-web. Because CaN models rely on concepts easily grasped by all actors, because they are explicit about knowns and unknowns and because the interpretation of their results is simple without being prescriptive, they can be used in a context of participatory management. We propose that, three decades after the emergence of chaos theories, CaN can be a practical step to reconcile scientists and non-scientists around the modelling of structurally and dynamically complex natural systems, and significantly contribute to ecosystem-based fisheries management.

Funder

Research Council of Norway

Nansen Legacy

Norwegian Institute of Marine Research

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference78 articles.

1. Managing chaotic fisheries;Acheson;Linking Social and Ecological Systems,1998

2. Viability Theory

3. Hard choices in fisheries development;Bailey;Marine Policy,1990

4. Bridging the gap between fisheries science and society: exploring fisheries science as a social activity;Bailey;ICES Journal of Marine Science,2017

5. Harvesting natural populations in a randomly fluctuating environment;Beddington;Science,1977

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3