Testing Antarctic resilience: the effects of elevated seawater temperature and decreased pH on two gastropod species

Author:

Schram Julie B.1,Schoenrock Kathryn M.1,McClintock James B.1,Amsler Charles D.1,Angus Robert A.1

Affiliation:

1. Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, CH 464, Birmingham, AL 35294-1170, USA

Abstract

Abstract Ocean acidification has been hypothesized to increase stress and decrease shell calcification in gastropods, particularly in cold water habitats like the western Antarctic Peninsula (WAP). There is limited information on how calcified marine benthic invertebrates in this region will respond to these rapidly changing conditions. The present study investigated the effects of elevated seawater temperature and decreased pH on growth (wet mass and shell morphometrics), net calcification, and proximate body composition (protein and lipid) of body tissues in two common benthic gastropods. Individuals of the limpet Nacella concinna and the snail Margarella antarctica collected from the WAP were exposed to seawater in one of four treatment combinations: current ambient conditions (1.5°C, pH 8.0), near-future decreased pH (1.5°C, pH 7.8), near-future elevated temperature (3.5°C, pH 8.0), or combination of decreased pH and elevated temperature (3.5°C, pH 7.8). Following a 6-week exposure, limpets showed no temperature or pH effects on whole body mass or net calcification. Despite no significant differences in whole body mass, the shell length and width of limpets at elevated temperature tended to grow less than those at ambient temperature. There was a significant interaction between the sex of limpets and pH. There were no significant temperature or pH effects on growth, net calcification, shell morphologies, or proximate body composition of snails. Our findings suggest that both gastropod species demonstrate resilience to initial exposure to temperature and pH changes predicted to occur over the next several hundred years globally and perhaps sooner along the WAP. Despite few significant impacts of elevated temperature or decreased pH, any response to either abiotic variable in species with relatively slow growth and long lifespan is of note. In particular, we detected modest impacts of reduced pH on lipid allocation in the reproductive organs of the limpet N. concinna that warrants further study.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3