Acidic Apple Snails: Effects of Climate Change on the Mechanical Properties of an Invasive Gastropod

Author:

Cretini Cody P1,Galloway Katherine A1ORCID

Affiliation:

1. Department of Biological Sciences, Nicholls State University , 906 E 1st St, Thibodaux, LA 70301 , USA

Abstract

Synopsis Climate change can directly and indirectly affect species distribution. Warming may allow for invasive species, such as apple snails, to migrate to higher latitudes where temperatures are more conducive to their survival and invasion success. Higher temperatures and lower pH ranges have been previously documented to affect the form and function of calcium carbonate shells, which serve many functions, including protection from predators and thermoregulation. This study aimed to quantify differences in the morphology and mechanical properties of invasive apple snail, Pomacea maculata, shells after altering temperature and pH. We mechanically tested shells among three five-week treatments: control, higher temperature, and lower pH. Ultimate Strength increased in shells that were exposed to higher temperatures, but Young’s Modulus and Peak Load did not differ among control, temperature, and pH treatments. Apple snails in higher temperature tanks increased their shell length over the five-week trials. Although snail morphometrics did not differ between sexes, male shells exhibited a higher Peak Load, Young’s Modulus, and Ultimate Strength compared to female shells. Our findings are consistent with previous gastropod studies, in that a lower pH is associated with a decrease in shell size, and higher temperatures yield larger snail shells with a higher ultimate strength. Peak Load did not significantly differ among treatments, which suggests that the cross-sectional area is relatively important when considering this species mechanical performance today and in future climates. Due to the intense nutritional and calcium demands of egg production, female snails may be more susceptible to weakened shells due to low pH environments caused by climate change.

Funder

Nicholls Research Council

Barataria-Terrebonne National Estuary Program

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global Change in a Material World;Integrative And Comparative Biology;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3