Global Change in a Material World

Author:

Burnett Nicholas P1ORCID,Moore Talia Y2ORCID

Affiliation:

1. Department of Neurobiology, Physiology and Behavior, University of California, Davis , Davis, CA 95616 , USA

2. Robotics, Mechanical Engineering, Ecology and Evolutionary Biology, and Museum of Zoology, University of Michigan , Ann Arbor, MI 48109 , USA

Abstract

Synopsis The biological structures that fill the environment around us are derived from materials produced by organisms. These biological materials are key to the mechanical function of organisms. The pathways and growth processes that produce biological materials can influence the mechanical properties of the materials, which can in turn shape the higher level function of the system into which the materials are incorporated. Characterizing a biological system requires thorough knowledge of the underlying materials, including their mechanical function, diversity, evolution, and sensitivity to the environment. Anthropogenic activity is driving rapid and widespread changes to the natural environment and global climate, which are influencing organismal growth and physiology in myriad ways. Here, we briefly introduce a collection of articles that focus on the intersection of anthropogenic activity and the mechanical function of biological materials, as part of the “Global Change in a Material World” bundle for Integrative and Comparative Biology. In addition, we provide an analysis of the current scientific literature in this field, highlighting an urgent need to better understand how changes to our world, driven by human activity, are influencing the fundamental architecture and mechanical performance of organisms across the globe.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3