Modelled connectivity between Walleye Pollock (Gadus chalcogrammus) spawning and age-0 nursery areas in warm and cold years with implications for juvenile survival

Author:

Petrik Colleen M.1,Duffy-Anderson Janet T.2,Castruccio Frederic3,Curchitser Enrique N.3,Danielson Seth L.4,Hedstrom Katherine5,Mueter Franz1

Affiliation:

1. School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd., Juneau, AK 99801, USA

2. Alaska Fisheries Science Center, National Oceanographic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA

3. Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA

4. Institute of Marine Science, University of Alaska Fairbanks, 112 O'Neill Building, PO Box 757220, Fairbanks, AK 99775, USA

5. University of Alaska Fairbanks, Arctic Region Supercomputing Center, 105 West Ridge Research Building, PO Box 756020, Fairbanks, AK 99775, USA

Abstract

Abstract Adult and early life stage distributions of the commercially important demersal fish Walleye Pollock (Gadus chalcogrammus) have varied in relation to the warm and cold environmental conditions on the eastern Bering Sea (EBS) shelf. Previous modelling studies indicate that transport alone does not account for the disparate juvenile distributions in warm and cold years, but that spawning locations are important. Our objective was to determine the potential connectivity of EBS pollock spawning areas with juvenile nursery areas between warm and cold years from an 18-year hindcast (1995–2012). We calculated the connectivity between larval sources and juvenile positions that were produced by a coupled biological-physical individual-based model that simulated transport, growth, and vertical behavior of pollock from the egg until the juvenile stage. Three connectivity patterns were seen in most simulations: along-isobaths to the northwest, self-retention, and transport around the Pribilof Islands. The major differences in connectivity between warm and cold years, more northwards in warm years and more off-shelf in cold years, mimicked wind-driven flow characteristics of those years that were related to winter mean zonal position of the Aleutian Low. Connectivity relationships were more sensitive to spatial alterations in the spawning areas in cold years, while they were more responsive to spawn timing shifts in warm years. The strongest connectivity to advantageous juvenile habitats originated in the well-known spawning areas, but also in a less well-studied region on the Outer Shelf. This northern Outer Shelf region emerged as a very large sink of pollock reaching the juvenile transition from all spawning sources, suggesting more thorough sampling across multiple trophic levels of this potentially important juvenile pollock nursery is needed.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3