Climate warming and the loss of sea ice: the impact of sea-ice variability on the southeastern Bering Sea pelagic ecosystem

Author:

Hunt George L1,Yasumiishi Ellen M2ORCID,Eisner Lisa B3,Stabeno Phyllis J4,Decker Mary Beth5

Affiliation:

1. School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98250, USA

2. NOAA Alaska Fisheries Science Center, 17109 Pt Lena Loop Rd, Juneau, AK 99801, USA

3. NOAA Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA

4. NOAA Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115, USA

5. Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA

Abstract

Abstract We investigated relationships among three metrics of sea-ice cover in eight regions of the eastern Bering Sea and the abundance of Calanus copepods, jellyfish medusae, and year-class strength of walleye pollock (Gadus chalcogrammus). In summer, Calanus spp. were more abundant over the middle shelf when sea ice lingered late into spring, and, to a lesser extent, when February sea-ice cover was heavy. Between 1982 and 1999, there were no significant (p ≤ 0.05) relationships between the amount or timing of sea-ice cover and pollock recruitment. However, between 2000 and 2015, pollock year-class strength was positively correlated with sea ice in the outer and middle shelves, with 17 of 24 regressions significant. Pollock year-class strength was best predicted by days with sea-ice cover after February. Pollock recruitment was positively influenced by copepod numbers, particularly in the middle shelf, with r2 values from 0.36 to 0.47. We hypothesize that the Calanus spp. present in the southeastern Bering Sea are primarily Calanus glacialis that have been advected south in association with sea ice. None of our sea-ice metrics explained the variance in jellyfish biomass. Jellyfish biomass in our study area in the pollock age-0 year was not correlated with pollock recruitment 3 years later.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3