Aerial detection of beached marine plastic using a novel, hyperspectral short-wave infrared (SWIR) camera

Author:

Cocking Jennifer1ORCID,Narayanaswamy Bhavani E1ORCID,Waluda Claire M2ORCID,Williamson Benjamin J3ORCID

Affiliation:

1. Scottish Association for Marine Science, University of the Highlands and Islands, Oban PA37 1QA, UK

2. British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK

3. Environmental Research Institute, North Highland College, University of the Highlands and Islands, Thurso KW14 7EE, UK

Abstract

Abstract Plastic pollution in the marine environment is a pervasive, global problem that threatens wildlife and human health. Routine monitoring is required to determine pollution hotspots, focus clean-up efforts, and assess the efficacy of legislation implemented to reduce environmental contamination. The shoreline represents an accessible area, relative to open water, from which to monitor this. Unmanned aerial vehicles (UAVs) offer a low-cost platform for remote sensing that operates below cloud coverage, which can interfere with satellite imagery. Detection of plastic using visible light is limited however, and results may be improved by using short-wave infrared (SWIR) imagery to collect chemical information. Within the commercial recycling industry, plastic items are sorted successfully based on their composition using SWIR instrumentation that measures the chemical spectra of waste items under controlled illumination. Here, proof of concept is established for aerial detection of domestic and shoreline-harvested plastic items on a beach under natural sunlight with a lightweight (800 g), hyperspectral SWIR camera deployed at an altitude of ∼ 5 m over ∼ 30-m transects. The results of spectral correlation mapping to compare imagery spectra to polyethylene and polypropylene reference spectra demonstrate that these two polymers can be successfully detected with this novel method.

Funder

Natural Environment Research Council

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3