Remote sensing object detection with feature-associated convolutional neural networks

Author:

Rao Jianghao,Wu Tao,Li Hongyun,Zhang Jianlin,Bao Qiliang,Peng Zhenming

Abstract

Neural networks have become integral to remote sensing data processing. Among neural networks, convolutional neural networks (CNNs) in deep learning offer numerous advanced algorithms for object detection in remote sensing imagery, which is pivotal in military and civilian contexts. CNNs excel in extracting features from training samples. However, traditional CNN models often lack specific signal assumptions tailored to remote sensing data at the feature level. In this paper, we propose a novel approach aimed at effectively representing and correlating information within CNNs for remote sensing object detection. We introduce object tokens and incorporate global information features in embedding layers, facilitating the comprehensive utilization of features across multiple hierarchical levels. Consideration of feature maps from images as two-dimensional signals, matrix image signal processing is employed to correlate features for diverse representations within the CNN framework. Moreover, hierarchical feature signals are effectively represented and associated during end-to-end network training. Experiments on various datasets demonstrate that the CNN model incorporating feature representation and association outperforms CNN models lacking these elements in object detection from remote sensing images. Additionally, integrating image signal processing enhances efficiency in end-to-end network training. Various signal processing approaches increase the process ability of the network, and the methodology could be transferred to other specific and well-defined task.

Publisher

Frontiers Media SA

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3