Classification of weed using machine learning techniques: a review—challenges, current and future potential techniques
Author:
Publisher
Springer Science and Business Media LLC
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Link
https://link.springer.com/content/pdf/10.1007/s41348-022-00612-9.pdf
Reference120 articles.
1. Abouzahir S, Sadik M, Sabir E (2018) Enhanced approach for weeds species detection using machine vision. In: 2018 international conference on electronics, control, optimization and computer science (ICECOCS). IEEE, pp 1–6. https://doi.org/10.1109/icecocs.2018.8610505
2. Adams J, Qiu Y, Xu Y, Schnable JC (2020) Plant segmentation by supervised machine learning methods. Plant Phenom J 3(1):e20001. https://doi.org/10.1002/ppj2.20001
3. Adhikari SP, Yang H, Kim H (2019) Learning semantic graphics using convolutional encoder–decoder network for autonomous weeding in paddy. Front Plant Sci 10:1404. https://doi.org/10.3389/fpls.2019.01404
4. Ahmed F, Al-Mamun HA, Bari AH, Hossain E, Kwan P (2012) Classification of crops and weeds from digital images: a support vector machine approach. Crop Prot 40:98–104. https://doi.org/10.1016/j.cropro.2012.04.024
5. Alam M, Alam MS, Roman M, Tufail M, Khan MU, Khan MT (2020) Real-time machine-learning based crop/weed detection and classification for variable-rate spraying in precision agriculture. In: 2020 7th international conference on electrical and electronics engineering (ICEEE). IEEE, pp 273–280. https://doi.org/10.1109/ICEEE49618.2020.9102505
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. YOLO-WDNet: A lightweight and accurate model for weeds detection in cotton field;Computers and Electronics in Agriculture;2024-10
2. A comprehensive survey on weed and crop classification using machine learning and deep learning;Artificial Intelligence in Agriculture;2024-09
3. Key Technologies of Intelligent Weeding for Vegetables: A Review;Agriculture;2024-08-16
4. Identifying rice field weeds from unmanned aerial vehicle remote sensing imagery using deep learning;Plant Methods;2024-07-16
5. Remote sensing object detection with feature-associated convolutional neural networks;Frontiers in Earth Science;2024-07-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3