Spatial predictive distribution modelling of the kelp species Laminaria hyperborea

Author:

Bekkby Trine1,Rinde Eli1,Erikstad Lars2,Bakkestuen Vegar23

Affiliation:

1. Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway

2. Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway

3. Department of Botany, NHM, University of Oslo, PO Box 1172, Blindern, N-0318 Oslo, Norway

Abstract

AbstractBekkby, T., Rinde, E., Erikstad, L., and Bakkestuen, V. 2009. Spatial predictive distribution modelling of the kelp species Laminaria hyperborea. – ICES Journal of Marine Science, 66: 2106–2115. The kelp species Laminaria hyperborea constitutes highly productive kelp forest systems hosting a broad diversity of species and providing the basis for commercial kelp harvesting and, through its productivity, the fishing industry. Spatial planning and management of this important habitat and resource needs to be based on distribution maps and detailed knowledge of the main factors influencing the distribution. However, in countries with a long and complex coastline, such as Norway, detailed mapping is practically and economically difficult. Consequently, alternative methods are required. Based on modelled and field-measured geophysical variables and presence/absence data of L. hyperborea, a spatial predictive probability model for kelp distribution is developed. The influence of depth, slope, terrain curvature, light exposure, wave exposure, and current speed on the distribution of L. hyperborea are modelled using a generalized additive model. Using the Akaike Information Criterion, we found that the most important geophysical factors explaining the distribution of kelp were depth, terrain curvature, and wave and light exposure. The resulting predictive model was very reliable, showing good ability to predict the presence and absence of kelp.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference52 articles.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3